Improving Hierarchical Monte

نویسنده

  • Jackson Pope
چکیده

Hierarchical subdivision techniques remove the need for a-priori meshing of surfaces when approximating global illumination. In addition they allow progressive reenement of the solution. However, when subdivision is based upon Monte Carlo methods, due to the stochastic nature of such techniques, subdivision decisions cannot be made unless a suuciently large number of samples have been considered. Shadow boundaries are one of the main features such subdivision algorithms are designed to detect, but mesh elements that are in shadow receive less light, and hence are slower to subdivide. In this paper we investigate methods for modifying the Monte Carlo hierarchical subdivision algorithm to improve the detection of shadow boundaries and caustics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Hierarachical Stochastic Radiosity Algorithm

Hierarchical subdivision techniques remove the need for a-priori meshing of surfaces when approximating global illumination. In addition they allow progressive re nement of the solution. However, when subdivision is based upon Monte Carlo methods, due to the stochastic nature of such techniques, subdivision decisions cannot be made unless a su ciently large number of samples have been considere...

متن کامل

Improving the efficiency of Monte Carlo power estimation [VLSI]

In this paper, we propose two efficient statistical sampling techniques for estimating the total power consumption of large hierarchical circuits. We first show that, due to the characteristic of sampling efficiency in Monte Carlo simulation, granularity of samples is an important issue in achieving high overall efficiency. The proposed techniques perform sampling both temporally (across differ...

متن کامل

Improving phylogenetic analyses by incorporating additional information from genetic sequence databases

MOTIVATION Statistical analyses of phylogenetic data culminate in uncertain estimates of underlying model parameters. Lack of additional data hinders the ability to reduce this uncertainty, as the original phylogenetic dataset is often complete, containing the entire gene or genome information available for the given set of taxa. Informative priors in a Bayesian analysis can reduce posterior un...

متن کامل

Hierarchical Bayesian Modeling of Human Decision-Making Using Wiener Diffusion

Wiener diffusion accounts of human decision-making are among the most successful and best developed formal models in the psychological sciences. We reconsider these models from a Bayesian perspective, using graphical modeling, and Markov Chain Monte-Carlo methods for posterior sampling. By analyzing seminal data from a brightness discrimination task, we show how the Bayesian approach offers sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000